Question	Answer	Mark	Guidance
1 (a)	$ \begin{array}{ c c c c c } CH_3 & CH_3 & & \\ & & & \\ H_3C & \hline C & \hline C & \hline C & \hline H & \\ & & & \\ Br & Br & \checkmark \end{array} $	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above DO NOT ALLOW molecular formula ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives.
(b)	Reagent A : correct halogen ✓ e.g. Br₂ / bromine	1	ALLOW Cl_2 if dichloro compound drawnALLOW l_2 if diiodo compound drawnIGNORE state symbolsAnswer must match box from (a) to score
(C) (i)	Steam AND acid catalyst ✓	1	ALLOW H ⁺ / named acid / H ₂ SO ₄ / H ₃ PO ₄ ALLOW H ₂ O(g) ALLOW water only if a temperature of 100 °C or above is quoted. IGNORE any temperature given with steam IGNORE pressure
(ii)	(compounds or molecules) having the same molecular formula but different structural formulae ✓	1	ALLOW different structure OR different displayed formula OR different skeletal formula for structure Same formula is not sufficient Different arrangement of atoms is not sufficient
(iii)	$\begin{array}{cccccc} CH_{3}CH_{3} & CH_{3}CH_{3} \\ & & \\ H_{3}C-C-C-H & H_{3}C-C-H \\ & & \\ OH & H & \checkmark & H & OH & \checkmark \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH–
(iv)	Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol ✓	2	ALLOW ORA throughout DO NOT ALLOW OH ⁻ (ions) / hydroxide (ions)
	Does not form hydrogen bonds with water \checkmark		'Does not form hydrogen bonds' is not sufficient

Question	Answer	Mark	Guidance
(d)	Reagents: Acid/H ⁺ and (potassium or sodium) dichromate/Cr ₂ O ₇ ²⁻ seen once \checkmark	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Observations: Orange to Green OR Orange to Blue✓		ALLOW H_2SO_4 and $K_2Cr_2O_7$
	Distillation / Distil produces aldehyde/CH ₃ CH ₂ CHO: \checkmark CH ₃ CH ₂ CH ₂ OH + [O] \longrightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark		ALLOW correct displayed formula OR correct structural formula OR skeletal formula OR a mixture of the above DO NOT ALLOW molecular formulae ALLOW C ₃ H ₇ OH for propan-1-ol in equations
			DO NOT ALLOW CH ₃ CH ₂ COH for aldehyde
	Reflux (of propan-1-ol) produces carboxylic acid/CH ₃ CH ₂ COOH \checkmark CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ COOH + H ₂ O \checkmark		IGNORE further oxidation of aldehyde ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid
	Total	14	

Q	uesti	on	Answer	Marks	Guidance
2	(a)	(i)	E and H ✓	1	ALLOW pentan-2-ol and 2-methylbutan-2-ol
		(ii)	H✓	1	ALLOW 2-methylbutan-2-ol
		(iii)	F✓	1	ALLOW propan-1-ol
	(b)	(i)	C₅H ₁₀ O ✓	1	ALLOW any order of atoms
					DO NOT ALLOW C₅H ₉ OH
		(ii)	2-methylpentan-3-ol ✓	1	ALLOW 2-methylpentane-3-ol
					ALLOW absence of hyphens or use of commas
					ALLOW space between methyl and pentan
					DO NOT ALLOW 2-methylpent-3-ol OR 2-methypentan-3-ol OR 2-metpentan-3-ol, 4-methylpentan-3-ol etc
	(c)		(series of compound) with same functional group \checkmark	2	IGNORE with same or similar chemical properties OR same or similar chemical reactions
					IGNORE references to physical properties or named physical properties vary with an observable trend.
					IGNORE have similar or the same physical properties
			and each successive member differing by $CH_2 \checkmark$		IGNORE has same general formula
					ALLOW each subsequent member varying by CH ₂
					DO NOT ALLOW have the same empirical formula OR have the same molecular formula

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	$2C_2H_4 + O_2 \rightarrow 2C_2H_4O \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW correct multiples, including fractions, of this equation IGNORE state symbols DO NOT ALLOW [O]
		(ii)	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW correct multiples of this equation IGNORE state symbols DO NOT ALLOW [O]
	(b)	(i)	H $\delta +$ H A	1	Only one carbon atom needs to have the correct partial charge DO NOT ALLOW partial charges on hydrogen atoms
		(ii)	Movement of an electron pair ✓	1	ALLOW movement of a lone pair OR movement of a bond ALLOW movement of two electrons
		(iii)	Heterolytic ✓ Both electrons (in the bond) go to the same atom OR (bond breaks) to make a cation and (a lone pair on the oxygen atom) OR bond pair becomes a lone pair on oxygen ✓	2	MARK INDEPENDENTLY ALLOW one atom gets none of the bonded electrons DO NOT ALLOW both electrons go to a molecule DO NOT ALLOW makes a positive and a negative ion because in this example this is not true
		(iv)	It donates a pair of electrons ✓	1	ALLOW donates a lone pair DO NOT ALLOW it donates electrons
		(v)	idea that H ⁺ ion is used in step 1 AND made in step 4 \checkmark	1	ALLOW H ⁺ ion is used at the start AND made at the end IGNORE overall H ⁺ is not used up in the mechanism

Questi	on	Answer	Marks	Guidance
(b)	(vi)	Н Н нсн ОН ОСН ₃ ✓	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg CH₂OHCH₂OCH₃ ALLOW vertical 'bond' to any part of the OH or OCH₃ group DO NOT ALLOW formula with horizontal –HO OR OH– DO NOT ALLOW formula with horizontal –CH₃O OR OCH₃–
(c)		Ethane-1,2-diol has more OH groups (than ethanol) ✓	2	ALLOW has more hydroxyl groups OR has more hydroxy groups OR has more alcohol groups Ethane-1,2-diol has two OH groups is NOT sufficient but ALLOW ethane-1,2-diol has two OH groups and ethanol has one DO NOT ALLOW it has hydroxide (ions)
		Stronger hydrogen bonding (between ethane-1,2-diol molecules) ✓		ALLOW more hydrogen bonds (between ethane-1,2-diol molecules) IGNORE hydrogen bonds with water
(d)			2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		One ester linkage drawn despite the rest of the structure ✓ Correct structure for example		ALLOW ester shown as all the atoms OR as -COOC- OR -CH ₂ OOC- OR -CH ₂ OCOC-
		CH ₃ COOCH ₂ CH ₂ OOCCH ₃ OR		IGNORE molecular formula
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		\checkmark		

Question	er	Marks	Guidance
(e)	Any two from: $\begin{array}{c} H & H & 0 & 0 \\ -C & -C & 0 & H - C & 0 & -H \end{array}$ $\begin{array}{c} H & H & 0 & 0 \\ -C & -C & 0 & H - C & 0 & -H \end{array}$ $\begin{array}{c} H & H & 0 & 0 \\ -O & -C & -C & 0 & -O & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ -O & -C & -C & 0 & -O & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ -O & -C & -C & 0 & -O & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ -O & -C & -C & -O & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ H & -O & -C & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ H & -O & -C & -C & -O & -H \end{array}$ $\begin{array}{c} H & H & 0 & H & 0 \\ H & -O & -C & -C & -O & -H \end{array}$ \swarrow \checkmark H <th>2</th> <th>Mark incorrect answers first If one incorrect answer maximum of 1 mark If two incorrect answers award 0 marks ALLOW OH instead of -O—H ALLOW vertical 'bond' to any part of the OH DO NOT ALLOW formula with horizontal —HO OR OH— but ALLOW ECF if both displayed formulae are drawn this way ALLOW one mark if two correct structural OR skeletal formula OR mixture of the above (as long as unambiguous) are drawn</th>	2	Mark incorrect answers first If one incorrect answer maximum of 1 mark If two incorrect answers award 0 marks ALLOW OH instead of -O—H ALLOW vertical 'bond' to any part of the OH DO NOT ALLOW formula with horizontal —HO OR OH— but ALLOW ECF if both displayed formulae are drawn this way ALLOW one mark if two correct structural OR skeletal formula OR mixture of the above (as long as unambiguous) are drawn
	Total	15	

(Questi	ion	Answer	Mark	Guidance
4	(a)	(i)	C _n H _{2n+1} OH ✓	1	ALLOW $C_n H_{2n+2} O$
		(ii)	C ₁₃ H ₂₈ O ✓	1	ALLOW C ₁₃ H ₂₇ OH
	(b)		group of atoms OR part of a molecule ✓	2	ALLOW part of an alcohol IGNORE part of a compound
			that give a compound its (characteristic set of) reactions \checkmark		 ALLOW that determines its chemical properties OR that gives the compound its reaction ALLOW that determines its homologous series
	(c)	(i)		3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Alkanes have van der Waals' intermolecular forces \checkmark Alcohols have hydrogen bonds (and van der Waals' forces) \checkmark		ALLOW reference to specific compounds e.g. comparing methane and methanol vdW force is not sufficient here
l			Hydrogen bonds are stronger (than van der Waals' forces) OR ORA \checkmark		Third marking point is dependent on the correct intermolecular forces being described BUT ALLOW hydrogen bonds are stronger than intermolecular forces in alkanes
		(ii)	Methylpropan-1-ol has weaker van der Waals' forces (than butan-1-ol) OR ORA ✓	2	ALLOW methylpropan-1-ol has fewer van der Waals' forces (than butan-1-ol)
			Methylpropan-1-ol has less surface contact (than butan-1-ol) OR ORA OR		IGNORE reference to more surface area / molecules are closer
		1	Methylpropan-1-ol has more branching (than butan-1-ol) OR ORA ✓		ALLOW methylpropan-1-ol is branched and butan-1-ol is not IGNORE 'methylpropan-1-ol is branched' with no comparison

Q	uesti	on	Answer	Mark	Guidance
	(d)	(i)	CH ₃ OH + $1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O \checkmark$ CH ₃ OH + $O_2 \rightarrow CO + 2H_2O \checkmark$	2	ALLOW CH_4O for incomplete combustion ALLOW $CH_3OH + \frac{1}{2}O_2 \rightarrow C + 2H_2O$ ALLOW $2CH_3OH + \frac{11}{2}O_2 \rightarrow C + CO + 4H_2O$ ALLOW correct multiples of these equations
		/			IGNORE state symbols
		(ii)	insufficient supply of oxygen OR limited amount of air OR poorly ventilated ✓	1	
		(iii)	Feedstock (in manufacture of organic compounds) OR manufacture of biodiesel OR manufacture of esters. ✓	1	ALLOW manufacture of a named organic compound that can be made from methanol ALLOW antifreeze, screenwash
	(e)			2	One mark is for the correct structure of the product One mark is for the equation
			CH₃CH₂CH₂COOH ✓ BUT		ALLOW $CH_3CH_2CH_2CO_2H$ DO NOT ALLOW $C_4H_8O_2$, C_3H_7COOH , C_4H_7OOH for the structure mark but ALLOW for the equation mark
			C ₄ H ₉ OH + 2[O] → CH ₃ CH ₂ CH ₂ COOH + H ₂ O \checkmark \checkmark		Give credit for the correct structure in the equation e.g. $C_4H_9OH + 2[O] \rightarrow CH_3CH_2CH_2COOH + H_2O$ scores two marks but $C_4H_9OH + [O] \rightarrow CH_3CH_2CH_2COOH + H_2$ scores one mark $C_4H_{10}O + 2[O] \rightarrow C_4H_8O_2 + H_2O$ scores one mark
					ALLOW one mark for: C ₄ H ₉ OH + [O] \rightarrow CH ₃ CH ₂ CH ₂ CHO + H ₂ O

Question	Answer	Mark	Guidance
(f) (i)	methylpropan-2-ol OR 2-methylpropan-2-ol \checkmark H H C H H H H C H H H C H H H H C H H H H C H H H H H K K K K	2	DO NOT ALLOW methylprop-2-ol ALLOW (CH ₃) ₃ COH ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW
(ii)	H H H H H C C - C - C - C - C - C - C - C - C -	1	ALLOW CH ₃ CHOHCH ₂ CH ₃ ALLOW OH ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula IGNORE an incorrect name
	Total	18	